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A Study of Renewal Processes with IMRL and DFR

Interarrival Times

Section 1.

Introduction and Summary.

A random variable X 1is said to have an IMRL (increasing mean
residual life) distribution on [O,») if Pr(X <0) =0, Pr(X > 1t) >0
for all t, EX < w, and E(X-t|X > t) is increasing in t > 0. A
random variable X is said to héve a DFR (decreasing failure rate)
distribution on [0,®) if Pr(X < 0) =0, Pr(X >t) >0 for all 1,
and the conditional distribution of X-t given X >t 1is stochastically
increasing in t > O.

Consider a renewal process with interarrival time distribution F,
an IMRL distribution on [0,®). TLet M(t) be the expected number of
renewals in [0,t] including an initial renewal at time zero. If
oy = j‘g xng(x) < o define U(t) = t/pl+p2/2ui- We show (theorem 4)

fg) Xk+2 .

that if p ., = dF(x) < « for an integer k > O then:

(1) U(t) > M(t) > U(t) - min c.t .

In (1) c, is an expliciﬁly computed function of ;e esp o

1 =0,+e4,k. Moreover the numbers vj = cj+l/cj are ixgcreasing and
for v, St <V, etV = min c.t7t; thus for te{v._l,v_]
J J 0<i<k J==J

the lower bound in (1) reduces to ﬁ(t)-cjt—J.
a.t
We also show (theorem 5) that if WF(ao) = fs e © ar(t) < » for

an ag > 0 then for 0 < a < ao:



(2)  0(t) 2M(t) 2 0()-(e*-1) M (a) (/) A (a)-1) T

where as before U(t) = t/pl+p2/2pi .

The bounds (1) and (2) give intervals for M(t) whose lengths
rapidly approach O as 1t — .

We also derive several monotonicity results for IMRL and DFR
renewal processes (theorems 2 and 3). If F is IMRL then the expected
forward recurrence time EZ(t) is increasing in t as is M(t)—t/pl,
and M(t+h)-M(t) > h/pl for all t >0, h > 0. If F 1is DFR theﬁ
A(t) (the renewal age at time t) and 2Z(t) are stochastically increasing
in t; N(t+h)-N(t) 1is stochastically decreasing in t for all h > 0;
M(t+h)-M(t)lh/pl as t ooy M(t) is concave and if F is absolutely
continuous thén the renewal density decreases to Hil as t — .

Our results follow from a representation theorem (theorem 1) for
stationary IMRL renewal processes, and general delayed DFR renewal
processes. This representation seems fo be an ideal tool for the study
of IMRL and DFR renewal processes.

The theory of DFR distributions is developed in Barlow, Marshall and
Proschan [5], Barlow and Marshall ([2],[3]), Barlow [1], and Barlow and
Proschan [4]. IMRL processes are studied by Bryson and Siddiqui [6], and

Haines and Singpurwalla [8].



Section 2.

Definitions.
A probability distribution F is said to be DFR on [0,») if

F(07) =0, F(t) <1 for all t, and F(t+s)/F(t) is increasing

Il

in t >0 for all s >0 (F(x)=1-F(x)). By increasing (decreasing)

we mean monotone non-decreasing (non-increasing). If F(O-) = 0,

F(t) < 1 for all t, and F is absolutely continuous with pdf f,
then F - is DFR on [0,w) if and only if there exists a version of

£ for which h(x) = f(x)/F(x) is decreasing ([5]p.578). The function
h is called the hazard fﬁnction.

1

is the stationary forward recurrence time and renewal age distribution

If = féf xdF(x) < » then define G(x) = p - féx Fy)dy. G
for a renewal process with interarrival time distribution F. A prob-
ability distribution F is said to be IMRL on [0,») if F(0 ) = O,
F(t) >0 for all t, p <o, and B(X-t|x > t) = w G(£)/F(t)  is
increasing in t. Since f%t)/plg(t) is the hazard function of the
distribution G we see that F IMRL <=> G DFR. Also note that if
F is DFR and by <« then F 1is IMRL. It is easy to construct
examples for which F is IMRL but not DFR.

Let X = 0, and Xl’X

0 2’

n
89 =0, 8, =% X5 n=l,2,..., N(t) = {#5; <t} = min{i:s, >t}, and

eee be i.i.d. with distribution PF. Define

M(t) = EN(t). Define F(t) = 1-F(t), q = F(0), by = f;° xde(x)
N(t)
L(t) = M(t)-t/pl-pz/épi, zZ(t) = § X, =t (the forward recurrence time
N(t)-1
at t) and A(t) = t- = Xy (the renewal age at t). The process
1



{N(t), t > 0} 4is called an ordinary F renewal process. If Xi’XE""
are independént, Pr(X'l >t) = f;o (F(t+y)/F(y))at(y) where H is a
probability distribution on [0,), x:j ~F for §22, 5] = % X'i,

N (t) = (#8] < ) = max{i: 8] < ¢}, then (N'(t), t >0} 1is called

a delayed F renewal process with initial age distribution H. For a
delayed F renewal process Z'(t), Z'(t), N'(t), M'(t), X;, s; will
denote the anologues of Z(t), A(t), N(t), M(t), X;> S;+ A delayed F
renewal process with initial age distribution G(x) = uil fg F(y)dy

is called a stationary F renewal process. A stationary F renewal
process satisfies EN'(t) = t/pl and Z'(t) ~ A'(t) ~ G for all

t > 0.



Section 5.

Representations.

We will either assume F IMRL on [O,») or DFR on [0,x). We
will construct two dependent renewal processes. Process 1 will be an
ordinary F renewal process. Process 2 will be a stationary F renewal
vrocess in the IMRL case, and delayed F renewal process with arbitrary
initial age distribution in the DFR case. The special feature of process

2, under this construction, is that 8 S;, i=1,2,... for a random

N+i-1
integer N (the distribution of N will depend on the initial age
distribution). Processes 1 and 2 differ only in that process 2 has zero
renewals in [O,SN) while process 1 has .N renewals in this interval.
The simple nature of this difference is exploited to obtain our results.
The construction is based on a simple idea which is obscured by the
details of the construction and. proof. We decompose the hazard into 2
components,the first component causing failure for both processes, the
second component only causing failure for process 2. The construction
uses the following lemma:
Lemma 1. Let X Dbe distributed as ‘-F where F will either be
assumed IMRL on [0,w) or DFR on [0,®). Set K(t) = G(t) in
the IMRL case and K(t) = [© (F(t+y)/F(y))au(y), where H is an arbitrary
probability distribution ono [0,=), .in the DFR case. Define R;(t) = K(t+v)/K(~v),
3§(t) = fkt)/ﬁ;(t). Then 3& is the survival function of a perhaps
defective distribution on [0,w).

Proof. In the IMRL case 3§(t) = (F(t)/G(£) )(&(+)/a(t+v))G(v), and sincé

G is DFR both F(t)/G(t) and G(t)/G(t+v) are decreasing. Thus Ev

\n



- - o . — _ _ -1 -1
is decreasing. In the DFR case Jv(t) = K(v)LS (Flt+w+y)/T@) Fly)) aHly)] .
0
Since F is DFR the denominator is increasing, and then since the

numerator is constant, Jv is decreasing. Thus in both cases iy
is decreasing. In addition 3} is right continuous, equals 1 for
t < 0 and is always between O and 1. It is thus the survival
function of a perhaps defective distribution on [0,w). ||

We proceed with the construction. Again E(t) = E(t) when
F is assumed IMRL , and K(t) = f: (F(t+y)/F(y))an(y) with H
an arbitrary probability distribution on [0,0);, when F 1is assumed DFR.

Construct Zl and W independent with Zl ~K, W, ~J where

1
and X, =X' =Y
d t)

1

J(t) = F(£)/K(t). If 2, <W; set X =X| =2

1 1 j-1’

j=2,5,...v where {Yi,i > 1} is an i.i.d. sequence with distribution

and go to stage

VF indeggndent of (zl,wl). If zl>wl, set X, = W

2. At stage 2 construct 22 and W2 conditionally independent of each

other and of (zl,wl) given Wl’ with Zglwl = v having distribution

K (t) = K(t+v)/K(v), and w2lwl = v distribution J (t) = E(t)/Ev(t).
= f = + = '

If Z2 S W2 then set X2 22, Xl Wl Z2 and Xj Xj—l

j=3,4%,... where {Yi,i=1,2,...} is i.i.d. with distribution F and

= Yj_g:

independent of (zl, Wis 2o w2). If W, <2,

stage 5. We reach stage m if and only if Wi < Zi’ i=l;e¢.,m=1, in

set X2 = W, and go to

2

which case Xi = Wi’ i=l,ee.,m=1. At stage m we construct Zm and

Wm conditionally independent of each other and of (Zl’wl)..'(zm—l’wm—l)
m-1 m~1 m-1
given Zl W., with (Zm| ?i W, = v) ~ X, (wml ?iwi =v)~J,-
m-1 '
— t — = 1 = T=mt «o 0
If Zm < Wﬁ set Xm Zm, Xl i Wi+Zm’ Xj Xj—m&l Yj—m’ J=mtl,

where {Yi,i > 1} is i.i.4. with distribution F and independent of



(Zl’wl’zz’wa’""Zm-l’wm—l)' If Z >W_  we go to stage mtl and

repeat.

Theorem l. Under the above construction:

(i) {Xi,i=l,2,---} are i.i.d. with distribution F.

(i1) {X{,1 > 1} are independent, X| ~ K, XS ~F for j=2,3.

P | . . __ — f CENY
(iii) Xi = XN+i—l for i=1,2,... where N = min{i: Zi < Wi}

and Pr(N < o) = 1.
Proof. (i) Define N =min{i: Z, <W.}, N=w if W, <Z, for all

HG > g = , 3=Lyennyicl) ~ min(z¥,W¥
i. Now (X, |N2>i, (wj,zj) (wj,zj), J=1,+++5i-1) ~ min(Z W)

i-1
: *
where v = X Ww_, Z* ~ K, W* ~ J and Z* and W are independent.
1 3 v v v v v v

since K (£)T,(t) = F(e), (X, |0 21, (W3,2,) = (wyozy) J=1,000si-1) ~ F.
Moreover (XilN=j <i)~ Y, ;~F. Thus X, ~F independent of
Xys-++X; ;- Since this holds for all i, {Xj,j > 1} is i.i.d. with
distribution F. .

(ii) In our construction we generated WopeoesWoe Tt will now be

convenient to continue constructing Wj’s for j > N. At stage j

construct Wj to be conditionally independent of wl""’wj-l given

-1 ) o
S W., with (W.| & W.,=v) ~J . We know that Pr(f W,=«=) = 1 because
1 1 J 1 1 v 1 1

K is DFR, so inf Pr(wi > t) > inf Pr(wv > t) = F(t)/1lim R&(t) > 0.

1 v vV —>c0
Thus, given +t, for almost all {Wi=wi, i=1,2,...} we can find j so
J-1 J :
that Sw. <t< Zw,. Then
1 1 -1 1
J=1 _ - J-1 —
i o) = (I - = .
Pr(x} > tlwl,we, ) (ﬁ K, (w,)) K, ) (t E w.) = K(t)
=1 5w, oW,
17 107

Thus X! ~ K.



N

(iii) Since Xi ~ % X, and process 1 can have only finitely many

renewals in a finite time interval, and since Pr(Xi < w) =15, it follows

that Pr(l < o) = 1. |



Section k.

Some properties of IMRL and DFR renewal processes.

Theorems 2 and 3 below present several properties of IMRL and DFR
renewal processes. Theorem 2 is extensively used in section 5 to obtain
our bound for M(t).

We will need a simple result which is well known, but for which we
have no reference.

Lemma 2. Let F be a distribution on [0,0). If py < define

— o= n < : e = = .
Fl(t) = ft F(x)ax; if o define Fg(t) J{ Fl(x)dx. Then:

(1) p <o >t F(t) 50 as t >w; for k>0, g <o
> f: FF(t)at = bery/ 641 < @ and tkﬁl(t) 50 as t —ow; for
k>0, o< ©= f:)" tkfl(t)dt = pk_*_g/(k+l)(k+2) < o and
tkfg(t) =0 as towm; for k>0, <o éfoootkﬁg(t)dt =
Mg/ (1) (642) (1643) < .

(ii) For a > 0, \JIF(a) = f; eatdF(t) < o implies eatf(t),

eatfi(t) and eatfé(t) converge to O as t — . Moreover

fo & F(e)at = ™ pla)-1) <, [ 7T (£)at = a7 (yp(a)-ap 1) < =,

o gt— -3 2
- - —ap 1) < w.
and fO e Fg(t)dt a (WF(a) a (p2/2) apy 1) <
Proof. The egualities between integrals follew from interchanging the

order of integration. The convergence to zero follows from the equality

between the integrals in each pair and integration by parts. H

Thecrem 2. Consider an ordinary F renewal process with F IMRL. Then:

(1) M(t)-t/p.l and FEZ(t) are increasing in t > 0; M(t+h)-M(t)2h/pl



for all t >0, h > O and converges to h/'ul as t - ey if by < w

then IL(t) M(t)-t/pl-ue/Zp?_TO as t - w.

(ii) If ™ <o then 0> L(t) > —uil fw (E(x)-q-lg(x))dx
-1 E
Z K ft G(x)dx, where q = F(0).

(iii) For %k > 0, Megp < ® = 1im tkL(t)=O and s <
1t -
> 0> [T t5 L(t)at > —» 3 For a > 0, Vp(a) = I7 () < w
2 o .

>1lim ®PL(t) =0 anda 0> [TePlL(t)at > - .
t -0 0]

(iv) 1If u< @ and h is measurable, bounded, and lim h(t) =0
t-—)oo

then 1im [fP n(t-x)am(x)-wt [P n(x)ax] = o.
t—-w Y 1 0

Proof. Recall that process 1 is an ordinary F renewal process,
process 2 a stationary F renewal process, and Si = sN+i-l’ i=l,eee
Note that by Wald's identity BEN = p2/ép§ whether or not bo is
finite.

(1) M(t)-t/p = E(N(t)N'(t)). Since N(t)-w'(t) T m
M(t)—t/’p1 T EN = p2/2p§, by the monotone convergence theorem. Thus
if |__L2l<0° then 0> 1(t) 1 0 as t —w. Since z(t) = Nét)xi—t 1t
follows from Wald's identity that FZ(t) = pl(M(t)-t/pl), thus Ez(t)? .
Since M(t+h)-M(t)-h/pl = (M(t+h)-(t+h)/ul)-(m(t)—t/pl) and M(x)-x/pl
is increasing, M(t+h)-M(t) > h/pl. The convergence of M(t+h)-M(t) |
to h/p1 can be proved directly from the construction, but we will simply
appeal to Blackwell's theorem noting that if F is a lattice distribution
with period o then E(X~/2[X > o/2) = E(X-w/2|X > 0)

= E(X|X > 0)=wl2 <EX|X >0) so ¥ is not IMRELe

10



(i1) By the argument in (i) IL(t) = pr(z(t)-z'(t)). By construction

(0 if t>X]
0> Z(t)-z' (%) = l
L Z(t)—(X’l-—t) if t < Xi

Thus p L(t) = c(t) E(z(t)fx'l > 1) - ff: G(x)dx. since z(t)lx'l >t
is a mixture of distributions of the form X—VJX > v where X ~F

shich is IMRL, BE(z(t)[X] > t) > E(xl% > 0) = ™'y . Thus
02 Lt) 2 - S (@)-g F))ax 2w [T Ex)ax -

(iii) These results follow from the inequality O > L(t) > —pil f°t° G(x)ax
a1d lemma 2.
(iv) Consider [° h(t—x)d.M(x)—p:-Ll f; n(x)ax = [~ h(t=x)T(x < t).
0 0
1 if x<t
d(M(x)-x/pl), where I(x < t) .
0 1if x>t
By assumption the integrand converges to zero. By part (i) of this
2 .
theorem M(x)-x/pl T p2/2pl as x — o, thus if by < w M(x)-x/pl
has total finite variation on [0Q,») equal to p2/2p§-q-l- Thus
h(t-x)I(x < t) is dominated by supln(s)|, and fg)lsup h(s)ld(M(x)—x/ul)
S . .8
= (Sup,h(s)l)(p2/2p§-q-l) < w. The result follows from the dominated
s .

convergence theorem. “

Theorem 5. Let F be DFR on [0,»). Then:
(1) A(t) and Z(t) are stochastically increasing in t.
(i1) N(t+n)-N(t) is stochastically decreasing in t and
M(t+h)-M(t) ¢ b/, 88 t .
(iii) M(t) is concave.

11



(iv) If F is absolutely continuous then m(t)¥ pil as t - o,
where m 1s the renewal density function.
Proof. (i) Give process 2 initial age distribution H = FAS where FAS
is the age distribution of process 1 at time s. Then since A'(t) > A(t)
and 2'(t) > Z(t) for all t by comstruction, Pr(A(t+s) > a = Pr(A'(t) > a)
> Pr(A(t) > a) and similarly for Z(t).

(ii) Pr(N(t+h)-N(t) > k) = f:::o dFZ(t)(x) » Pr(N(h-x) > k). Since
7(t) is stochastically increasing and Pr(N(h-x) > k) is decreasing in
%, Pr(N(t+h)-N(t) > k) 1is decreasing in +t. Since N(t+h)-N(t) is

stochastically decreasing, M(t+h)-M(t) is decreasing.

(iii) We want to show that for 0<x <7y, 0<a< 1,
M(ox+(1-Q)y) > @ M(x)+(1-0)M(y), equivalently that r(x,(1-)(y-x))
> r(x+(1-)(y-x), a(y-x)) where r(t,s) = (M(t+s)-M(t))/s. Since M
is right continuous (M is actually continuous) it will suffice to show

that r(tl,kl/n) > r(tg,ke/n) for all n, 0<t, <t + kl/n < t,

consider the case 0 < kl < k2, the case kl > k2 > 0 follows similarly.
By part (i) of this theorem r(tg,kl/n) < r(tl,k1/n) and
r(t2+kl/n,(k2-kl)/n) < r(t2+kl/n,l/n) < r(tl+(kl—l)/n,l/n) < r(tl,kl/n),
thus  r(ty,k,/n) = (k[ ),k /0)+ [ (dgy=ky )/ kI (bt /0, (=K, )/n)

< (kl/kg)r(tl,k/n)+((kg-kl)/kg)r(tl,k/n) = r(ty,k/n).

(iv) Let hix) = f(x)/f%x) the decreasing hazard function. Now
m(t) = Eh(At) with hé and A(t) stochastically increasing. Thus
m(t) is decreasing and therefore has a limit, by the elementary renewal

theorem this limit must be pil.



Section 5.

Bounds for M(t).

Theorem. If F is IMRL on [O,») and TS < « for an integer

then:

(3) U(t) >M(t) > U(t) - min cit"i

0<i<k

2 2 =1
where U(t) = t/pl+p2/?pl: Cy T u2/2ul"q , and

0 < c, = -1 ﬂ: sl_lL(s)ds = f°° Sld(M(S)—S/pl) > -w for i=1,.
A . /

The term s is a function of R Y i=1l,...,k which can be

recursively computed from:

i-1
L T (e /s i=1 k
! WAL I R

s=1

()'l') Ci = 7i'p'l

vhere 7, = [pi+2/(i+l)(i+2)p§]—[pgpi+l/2(i+l)pi]
Xi = pi/il

Equation (4) can be explicitly solved yielding:

i1 i-3 » 4
5 c. oy it (7./3%) - (1o,
2 + 71 ’Zﬁ. 7J/J £§£ ( “1) (il’ -;iggé 75— lr+l)

J A 1,4
4

- where Ak,z = {(i,---,iz): 1,21 r=l,..05, %ir:k}

Proof. Since M(t) = U(t) + L(t) and L(t) < 0 (theorem 2, (i)),

M(t) < U(t). sSince L(t) is increasing (theorem 2,(i)),

L(t) > 1(0) = M(O)’HE/Zpi = q_l-p2/2p§ = -c,- Thus M(t) > U(t)-¢,.

13



Since L(t) is increasing it is at least as big as its average over [0,t]

with respect to any probability measure on [0,t]. Thus LCt)Ejj—l fg sl_lL(s)ds
which since L < O exceeds 1t7t f; sl_lL(s)ds = -¢; > = by theorem 2

i-1

- 5 w
part (iii). The equivalence between -it = / s' "L(s)ds and

0
f; sid(M(s)-s/pl) follows by integration by parts and part (iv) of
theorem 2. |
To identify the c 's, start with the identity M(t) = 1 + f;;M(t-x)dF(x),
subtract U(t) from both sides, multiply both sides by R e
identity ti-(t-x)! = iﬁ} (i)(t—x)rxi—r. This yields:
r=0

(6) sin(t) = f;' (t-x) T(tx)daF(x) + n(t)

i-1 . .
where h(t) = hl(t)+h2(t)-h5(t), hl(t) = f; [rZ% (;)(t-x rxl’r]'

I

L(5-x)ar(x), by(t) = thert [ Fxdax, ny(s) =t (/26 )R(8) -

Wow (6) is the renewal equation g = h+g%F = h*M, with g(t) =t"

<

L(t).

By part (iv) of theorem 2, if we can show that h(t) is bounded,

integrable and that 1lim h(t) = O, then we can conclude that

-+

i - 00 o
lim t7L(t) = pll J n(t)dt. But for i=l,...,k, 1im t'L(t) = O
t 5w 0 Y
by part (iii) of theorem 2. Thus the conclusion will reduce to

00

&) n(t)dt = 0, which will provide us with a useful identity.
To show that h 1is bounded, integrable and convergent to zero, we
do so separately for each hﬁ. By lemma 2, h2 and h3 are convergent

to zero and integrable with:

14



(7) fg ny(t)at = p o/ (i+1)(142)y,

o .2
(8) fo b (£)at = o w/2(140)0

The boundedness of hé. and h5 follows from the boundedness on
finite intervals and the convergence to O as t - w.

Defining L(y) =0 for y<O we write
h () = fo (r>_: (1 ((62)"L(tx)))aF(x) . Simee (%) L(t-x) -0
as t —» o by part (iii) of theorem 2, the integrand converges point-
wise to O. Moreover, since srfL(s)f is bounded on finite intervals
‘and converges to O, sup sTlu(s)] < Q, thus the integrand is dominated

. i-1 . ‘o
by the integrable function rzb (;)(s?p srlL(s)l)Xl *. Thus by the
dominated convergence theorem hl(t) - 0 « The above argument also shows
that lh (t)] < jﬁ (. M (sup s'|L(s)]) < w, thus h, is bounded. h
8 .

r=0 o L L
is integrable by part (iii) of theorem 2 since [ |h(t)|dt =
0

[ve)
2 ( )u [ s¥l1(s)]ds < © . Moreover:
r=0 T o ,

o) i-1 . [+S) i
(9) I, py(t)at = ré% (e fo s"L(s)ds = -it rzi(cr/r!)xi+l'r

0 ) R
The identity fo n(t)at = 0 is equivalent to - fo hl(t)dt =) hg(t)dt -
1
o . 4 . . . f 1) — 1
fO hB(t)dt. Using (7), (8), and (9) this gives us i rgi(cr/r.)ki+l_r—plji which

reduces to (4).

15



Define dj =0, d, = ci/i:, i=l,...5k, 8, =0, b, = yi/iz,

4=1, . ¢0,k; 80 = Q; Bi = u; j+7° 1=lreee,k. Then rewrite (4) as:
i
(10) di =15, = Y By g
=0
. i
(10) is a discrete renewal equation. Its solution is di = EzajMi—j
o j=O
where Mi = 3 Bgs), where B(S) is the s~-th convolution of P. S8ince
S)S=O i i-1
= - = 1. i = J = + 1)
50 0, Bi 0 for s >1i. We thus obtain di jzi 5jMi—j 61 -E& jMi-j
i-1 ) J=
= + 5 6, . . 5 .
5, jéi J(i . )éi- (lll Bir)’ which ig equivalent to (5). |l
2 2 'e i_j’g
At first glance it may seem that we need to compute cit—l for

several 1 1in order to compute inf cit—l. Fortunately this is not
i
the case.

Lemma 5. Assume that F is IMRL on [O,»). Then either F is quasi-

exponential (F(t) = qe—Xt, 0<g<1l, >0, t>0) in which case

c; = 0O or F is not quasi~-exponential in which case ¢y >0 for all 1i.

Define V.= 1, v, = Ci+1/ci’ i=0,1,2,... , with O/O = 0, w/w = o .

Then v, 1is increasing and for v. <t <wv,, c.t-~J = inf c.t-l .
i Jjg=1="=73 i

i=0,1, ...
Proof. If p, =« then j;° aM(t)-t/p) == , so ¢, =, i=0,1,... .
If p, <« then by theorem 2 part (ii) IL(t) 4is the distribution function
of a positive measure. Thus cy =.0 1if gnd only if L 1s a constant. Since
tlim L(t) = 0, that constant must be 0. TLet Z'(t) denote the forward
A
recurrence time of the stationary process at time +t. By our construction
z'(t) > Z(t) with equality for all t with probability one iff
X4 ~ X|X > 0. Since L(t) = pilE(Z(t)—Z’(t)) we see that
c. =0<= G(t) = q'lf(t) <=> n*(t) = qpil where h* 1is the hazard

B
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function for the distribution G. But, under this last condition

— -quilt -qp'lt
Gx) =e , so F(t) =qe "1 7, thus F is quasi-exponential.

Next consider the Hilbert space L2[[O,m),B,L] where B is
the collection of Borel sets on [0,x). Recall again that I is

the distribution function of a positive measure. Now

2 _ (@)/2 (G-1)/2y o /2y (G-1)/2)2

c.
d

= %1%+

by Schwartz's inequality. Note that the inequality trivially holds
in the quasi-exponential case, and also holds in the alternative

. C = O - o R . .
case since cj-l >0 and i 0 => 541 w. The inequality is

i : = C C E—1 V i =
equivalent to V5+l cj+l/cj > j/ j-1 5 (again 0|0 = 0,
w|w = ©). Thus the V.'s are increasing.

We next show that t < v, implies cJ_t“J e +mt'(3+m> for

m=1,2,... « Thus for t < v,, c.t™ is better to use than t‘k
’ = J’ 3 %

with k > j. A similar argument which we delete shows that

t> v, , implies cjt'J < ckt‘k for k < j. Together they show

-j . . .
that c¢.t is optimal in v, v,
J P [ J"l’ J

m >1. Then cjt_J < cj+mt_(3+m) if and only if

J. Suppose that t < Vb and

il
v, -
i=0 I

i |
b < e /e =

—]

Since t© < vb and each of the m terms of the product are equal to
or greater than Vj (since Vﬁ T) it follows that
m-1

m
t Sﬂ- Vj+i ” .

17



Remark. The above proof shows that if we only consider cO,...
where k is finite then c t™° = min .t forall t>v
k . . -
0<i<k ot
Theorem 5. If F is IMRL on [O,») and WF(aO) = f§ e 0 dF(t) < o

c
EASI
k

k-1"

for an a, > 0, then for 0 <ac< ay

a1y [ (ula)"l-(ug/’ﬁui)-:(wF(a)-l)-l] .

(11) U(t) > M(t) > U(t)-(e

Proof. The proof is very similar to that of theorem 4, Choose

ae(O,aO]. Using L(t) <0, L(t)} as in the proof of theorem 3
we obtain:
12) Ult) > M(t) 3 U(t) + a(e®a1)”t f; ™ 1.(s)ds

o0
where O > IO eatL(t)dt > ~x by part (iii) of theorem 2.
®©  as .
To evaluate WL(a) = fO e"L(s)ds we start with

t
M(t) =1 + fO M(t-x)dF(x), subtract U(t)} from each side and

multiply both sides by eat. This gives:

(13) 2P (t) = fg ea(t-X)L(t-X)dF(x) + 2 (%)
where
2(6) = 8y (6)42, (6) =45 (8), £ (8) = f;(eax-l)ea(t-X)L(t-X)dF(x),
o (t) = ult f: Floax, o5(8) = -(y/200)e™ F ()

18



We verify the conditions of part (iv) of theorem 2 in a similar
manner as in the proof of theorem 3, making heavy use of lemma 2
and part (iii) of theorem 2. The conclusion of part (iv) of
theorem 2, in light of lim eatL(t) =0 (part (iii) of theorem 2

t >
becomes:

-1
@) (g a)-1)vp (a)=(uy ) rp(a)-1)/a)=(uya®)  (vp(a)pryanl)

Since WF(a)—l # 0O for a # O we can divide both sides of
(14) vy WF(a)-l and solve for WL(a). This gives:

Sl
(15) v (@) = uy/2l-(uga%)  Hali(a)-1)17 .

Substituting (15) into (12) gives us (11). ||

Remark. (11) and (15) will hold for a < O whether or not
Vp(a) <o foran a>0. If p; <o andwe let a Mo in (11)

then we obtain M(t) > U(t)-clt-l where c. is given in (4). In

1
k -
general Hyes < w implies Wé )(O ) exists and equals
-(k+l:)-l ¢ - Thus wL(a) can be considered a generating function

for the ci‘s. However unless the particular form of WF(a) leads
to a simple expression for wL(a), expressions (4) and (5) of

theorem 5 will be preferable for computing the ci’s.

19



Section 6.

Improved bounds when F is DFR.

The bounds given in theorem 4, corollary 3, and theorem 5 for

IMRL distributions can be improved for DFR distributions. Define

. /s i . ¥ . . .
Ay =1, 04 = (i/i+1)7, 1> 1, ¢ =0.¢ vhere C is given in
* ¥ * .
theorem 3, and Vi = ci+l/ci = @Ji+l%li)vi. Also define
& t -
ga(t) = a(eat-l) 1 fO se®®as = (teat/eat-l)-a l, and v(a) = -awL(a) =

[aya) = Gy /2045 ) () 1) 7.

Corollary L. Assume that F is DFR on [0,»). Then:

(i) If py, <« then U(t) >M(t) > U(t)- min cit-l

0<i<k

(ii) vf Y and for V*

<t < v, c*t7d = inp M7
J=1 - " - J . i

3 i

thus for v?_l <t < v? the bound in (i) is given by U(t)-cgt'a.

(iii) If WF(aO) <o for an a, >0 then for 0<a<a.:

0 0
-1

g () -1

b+l L T
U(t) > M(t) > U(t)-(e 1) yla) > U)=(e¥A1) w(a) .

Proof. (i) L is concave by theorem 3 part (iv). Thus

j'lL(s)ds

n(3e 7 f7 ses3as) = L((3/34)8) 2 3870 [G s
> jt-j fg sj'lL(s)ds = ~cjt-j. Thus L(t) > -cj[(j+1/;j)t]'j

= c?t'a. The argument now proceeds as in theorem 3.

(ii) A simple differentiation argument shows that ai+lﬂjiT .
. - * * o ‘
Since Vi+l/viT by corollary 3 and Vi+l/vi s Gxi+l/ i)(V'i+l/vi)

we see that v§+l/v§ T.

20



The argument now proceeds as in corollary 3.

(1ii) The concavity argument in (i) shows that L(ga(t))

-1 .t
Z a(eat_l) 1 fo

Since ga(t) > t-a”

“1(t)
e B 1)) > - ). )

-L(g)
e®®1,(s)as > —(eat-l)alw(a) thus L(t) Z'(eaga -1) v(a).

1 and both are increasing g;l(t) > t+af1, thus

Example. f(x) = (F(l/E))-lx-l/ge-X, x > 0; this is the I'(1/2,1)= x§/2
distribution which is DFR ([5],p. 378). The moment bounds given in
theorem 3 and corollary 4 for IMRL distributions apply, as well as the
improved moment bounds for DFR distributions given in corollary b4.
Using our recursive formula (&) we compute ¢ = 1/2, ey =¢ = 1/8,

= 15/6M4, ¢, = 21/32, ¢, = 315/128, e = 1485/128. Next

% 5

vy =0, Wy =1/% v =1, vy = 15/8, vy = 14/5, v, = 15/4, vy = 33/7.

Denoting the lower bound given in theorem 4 by B(t) = U(t)- min cit'1
0<i<6
we obtain:

(2641, 0 <t < 1/4
2t+5/2-(8t)'l, /b <t <1

2t+5/2-(8t2>fl

, 1<t <15/8
B(t) =i 5
2443 /2-(15/64t7 ), 15/8

2t+5/2-(21/52th), /5 <t < 15/h

A

t < 1b/5

2t+43/2-(315/128t), 15/% < < 33/7

L2t+5/2-(lh85/128t6), 33/T <t <w
The lower bound given in corollary 4 which we denote by

B¥(t) = U(t) ~ min ¢, can be similarly written.
0<i<é6
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The table below gives a few values of t along with the corres-

ponding intervals [B(t),U(t)] and ([B*(t),U(t)] for M(t).

tf  (B(t),U(t)) (B*(t),U(t))

1| (1.2,1.7] [1.2,1.7]

.52 [2.25,2.5] [2.375,2.5]

1§ [3.375,3.5] [(3.44k,3.5]
1.5 [u.uuu,4.51 [4.475,4,5]

21 [5.471,5.5] [5.488,5.5]

31 [7.492,7.5] [7.497,7.5]

Lt [9.4976,9.5] [9.4990,9.5]

5 1 [11.49926,11.5] | [11.49971,11.5]
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